Hybrid Transformer and Holt-Winter’s Method for Time Series Forecasting
Published in Time Series for Health Workshop, 2024
Time series forecasting is an important research topic in machine learning due to its prevalence in social and scientific applications. Multi-model forecasting paradigm, including model hybridization and model combination, is shown to be more effective than single-model forecasting in the M4 competition. In this study, we hybridize exponential smoothing with transformer architecture to capture both levels and seasonal patterns while exploiting the complex non-linear trend in time series data. We show that our model can capture complex trends and seasonal patterns with moderately improvement in comparison to the state-of-the-arts result from the M4 competition.
Download here